

## REVIVING YOUR CNC MACHINES

A Complete Guide to FANUC Retrofits and Upgrades



Published: July 31, 2025





## Contents

| Introduction – What is a CNC retrofit?                            | 2  |
|-------------------------------------------------------------------|----|
| The Basics of CNC Controls Retrofits – From Old FANUC to New      | 3  |
| Why Retrofit Instead of Buying New? – The Smart Money Choice      | 5  |
| The Retrofit Process – Step by Step                               | 6  |
| Setting Up Controls – The Brain of Your Machine                   | 8  |
| Main Setup Challenges and How to Fix Them                         | 9  |
| Swapping Servo Motors – Sizing Right for Power and Precision      | 10 |
| Inertia – The Secret to Smooth Motion                             | 11 |
| Installation Challenges – Dealing with Real Factories             | 12 |
| Commissioning and Startup – Getting to Production                 | 13 |
| Why Partner with ASI? – Expertise Saves Time, Money and Headaches | 14 |
| Case Studies – Proven Results in the Real World                   | 15 |
| Resources and Further Reading                                     | 16 |
| Get More from the Machines You Already Own                        | 17 |



### **Foreward**

If you are a plant manager, engineer, or anyone interested in modernizing old manufacturing equipment, this guide is designed for you. We explain concepts in straightforward terms, similar to a high school textbook, defining any technical words along the way. CNC stands for Computer Numerical Control, the system that precisely directs machines to cut, drill, or shape materials like metal.

This book is rooted in ASI's proven expertise, having assisted hundreds of manufacturers with upgrades. We have verified all information with 2025 sources, including IRS tax guidelines, FANUC specifications, and industry analyses. We discuss the benefits of retrofits, the detailed process, and strategies to sidestep pitfalls. By the conclusion, you will be equipped to revitalize your aging FANUC CNC systems economically.

Let us begin. This ebook delivers the essential insights you need.





### Introduction – What is a **CNC** retrofit?

In the fast-paced world of manufacturing, efficiency is key to competitiveness. Picture a factory hampered by an outdated CNC machine that frequently fails. Sourcing parts becomes a challenge, repairs drain budgets, and every idle minute erodes profits. This scenario is common for facilities relying on FANUC CNC controls from the 1990s or early 2000s.

A retrofit acts like a vital upgrade, replacing the control system, servo motors, and essential elements while preserving the robust frame. This transformation enhances speed, accuracy, and maintenance ease. For instance, a shift to a newer FANUC model can handle instructions up to ten times faster, potentially shortening production cycles by 20 to 30 percent.

At ASI, we have specialized in retrofits for more than two decades, serving sectors such as aerospace, automotive, and medical devices. Our focus is on enabling modern capabilities, like remote monitoring, without the expense of entirely new machinery.

The timing is critical in 2025, amid supply chain disruptions and rising costs from inflation. New machines involve long waits and high prices, whereas retrofitting offers savings of one third to one half and downtime reductions of 40 to 50 percent, as reported by the Association for Manufacturing Technology.

Often, the mechanical structure of an old machine remains solid, but its electronics lag behind. Failures lead to scavenging for obsolete components, delaying operations for weeks.

This guide targets decision-makers on upgrades. It addresses fundamentals, procedures, technical aspects like motor sizing and inertia, and actual examples. Collaborating with specialists like ASI guarantees effective outcomes. Prepare your equipment for tomorrow's demands.

In upcoming chapters, we detail each phase. You will gain knowledge on selecting components, sizing motors, managing feedback, and incorporating Industry 4.0. This will empower you to discuss retrofits knowledgeably with your team.

Now, let us move to the essentials.





# The Basics of CNC Controls Retrofits – From Old FANUC to New

Following the overview of why outdated CNC machines hinder progress, this chapter delves into retrofit fundamentals. Consider it your foundation for grasping the upgrade. We define a retrofit, outline critical components, and highlight why FANUC remains a top choice. Ultimately, you will recognize how these modifications convert aging equipment into dependable assets.

A CNC controls retrofit involves replacing worn-out elements like the controller, motors, and wiring, while retaining the durable frame. It modernizes machines such as mills or lathes with FANUC systems, transitioning from older series like 15 or 18 to advanced ones like 30i or 0i.

FANUC resources indicate that retrofits typically encompass the controller, servo and spindle motors, amplifiers, cables, I/O units, and operator panels. The aim is to extend operational life by 10 to 20 years, enhancing speed, precision, and upkeep. This professional endeavor merges mechanical, electrical, and software skills, popular in fields like aerospace where full replacements are prohibitive. It supports 2025 sustainability by repurposing sturdy machinery.

Let us examine the primary elements. Each contributes to seamless function.

The controller serves as the core, directing movements with advanced tools like block lookahead to preempt paths and minimize vibrations for superior finishes. Upgrades prepare machines for high-precision tasks, such as aerospace components requiring sub-micron tolerances.

Servo motors propel axes like X, Y, or Z. Aging motors lose efficiency and reliability, offering limited feedback. Modern FANUC beta iS models achieve 95 percent efficiency, operate quietly, and provide up to 1 million pulses per revolution. They enable absolute positioning, eliminating rehoming after outages.



Drives and amplifiers supply power to motors. Legacy analog types are susceptible to noise and inefficiency. Current FANUC digital drives feature realtime diagnostics, regenerative braking for 30 to 50 percent energy savings, and fiber optic interfaces for error-free communication.

Wiring forms the connections, but outdated setups risk shorts or interference. Retrofits employ shielded cables to combat electromagnetic noise, with separate routing for power and signals. Enclosures house electronics, customized for space, cooling, and compliance with standards like UL and NEC, including clear labeling for troubleshooting.

Additional upgrades might include touchscreen panels for user-friendly operation, high-speed spindles up to 6000 RPM, and IoT sensors for monitoring. Feedback devices like encoders are refreshed, with more details later.

In essence, a retrofit revitalizes the system holistically. FANUC case studies, such as Triumph Aerospace, demonstrate reduced cycle times and costs. Expert execution is vital to prevent complications from mismatches.

FANUC dominates CNC with a 20 to 30 percent global share, innovating since the 1970s. Staying with FANUC ensures compatibility, easing program transfers and avoiding retraining. Their modular designs allow future scalability, like adding axes or IoT. Reliability stands out, with over 52 years mean time between failures and global part availability.

Real applications underscore benefits. Lincoln Park Boring Company retrofitted mills, shortening production and securing contracts. Bourn & Koch standardized on FANUC for better maintenance.

In 2025, FANUC's AI for maintenance and nanosmoothing for surfaces provide advantages, alongside energy-efficient drives for eco-friendly operations. Selecting FANUC means committing to adaptable, enduring technology.

As we proceed to the next chapter, we will weigh retrofitting against purchasing new equipment, emphasizing cost efficiencies and swift returns.

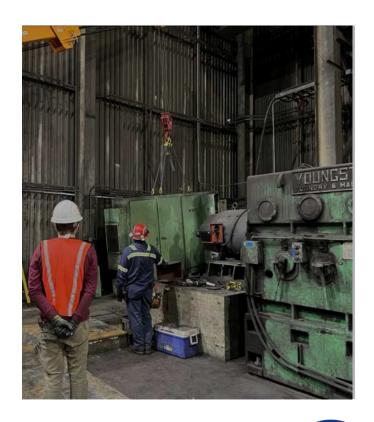
## Why Retrofit Instead of Buying New? – The Smart Money Choice

Although new CNC machines promise cutting-edge features, retrofitting frequently proves wiser in 2025's economic climate. It is not merely about initial savings; it involves limiting interruptions, improving dependability, and achieving rapid ROI. We will outline advantages with data from sources like the Association for Manufacturing Technology, FANUC studies, and IRS rules. This will illustrate retrofitting as a tactical decision for competitiveness.

Acquiring a new machine can be thrilling but burdensome. High-end units exceed \$1 million, with added expenses for transport, installation, and facility adjustments. Retrofitting saves 60 to 80 percent by capitalizing on existing structures, which often hold 60 to 80 percent of a new machine's value mechanically.

Savings extend beyond purchase. The 2025 IRS Section 179 permits deductions up to \$1.25 million for retrofits as improvements, with phase-outs starting at \$3.13 million. Small shops can deduct full costs immediately, reducing net expenses by 30 to 40 percent. Consult IRS Publication 946 for specifics—this incentive transforms modernization affordability.

Hidden fees inflate new machine costs. Staff training on unfamiliar systems may span months, incurring productivity losses. Tool recalibration and structural changes add up. Retrofits require brief training, centered on updated controls, with ROI in 1 to 2 years versus 3 to 5 for new buys, per industry insights.


Downtime plagues manufacturing. Obsolete parts for old systems cause prolonged halts, costing \$2000 to \$10000 hourly. Retrofitting introduces available components, slashing unplanned stops by 40 to 50 percent. Projects complete in 4 to 6 weeks, often during off times, unlike new machines' 6 to 12 month timelines amid supply issues.

Reliability excels in retrofits. FANUC's modern controls boast over 52 years MTBF, with Al monitoring to preempt failures, halving maintenance. They enhance energy efficiency by 30 to 50 percent and support sustainability by prolonging equipment life 10 to 20 years.

Performance surges with upgrades. High-resolution motors and fast processing cut cycles by 20 to 35 percent, rivaling new machines while integrating effortlessly.

In closing, retrofitting delivers upfront economies, minimal disruptions, steadfast operation, and superior output. ASI clients experience 35 percent downtime drops and accelerated ROI, adapting to 2025 pressures like cost hikes and delays. Retrofitting is an astute investment.

Next, we detail the retrofit steps.





## The Retrofit Process - Step by Step

Building on why retrofitting outperforms new purchases in savings and efficiency, it is time for hands-on guidance. How does a FANUC CNC upgrade unfold? This chapter traces the sequence from FANUC and expert sources. Typically 4 to 6 weeks with professionals like ASI, it minimizes impact through structured phases. We cover each step, importance, challenges, and tips, with examples. This knowledge shows how planning yields high performance.

The method upgrades controls, motors, drives, cables, I/O, and panels on FANUC-equipped machines in aerospace or automotive. ASI uses preassembled kits and certified techs for speed.

Step 1 begins with assessment, a diagnostic evaluation to confirm retrofit viability and define scope. Technicians examine structural integrity with tools like lasers, check mechanical parts, and run FANUC software for performance baselines. Input on enhancements like IoT tailors the plan.

This step is essential to avoid investing in flawed bases, which could lead to failures and wasted funds. It identifies fixes like ball screw replacements for 50 percent accuracy gains and aligns with trends like Ethernet upgrades.

Challenges include accessing confined areas or lacking docs.

FANUC tips: Employ AI Servo for data and high-precision probes. ASI finishes in 3 to 5 days with digital reports.

Step 2 is design, crafting a blueprint from assessment data for compatibility and scalability. Select parts like 30iB controllers for fast processing or beta iS motors for accuracy. Layout electricals, simulate with CNC Guide for cycle reductions of 20 to 30 percent, and plan expansions.

Planning cuts integration risks by 50 percent and quantifies benefits like energy savings. Challenges: Converting analog interfaces or balancing budgets.

Tips: Prioritize modular PMC and FSSB for noise resistance. ASI streamlines to 1 week with templates.

Step 3 involves removal, safely dismantling old components to prepare for new ones. Disconnect power, remove controller, motors, and wiring, document thoroughly, inspect exposed areas, and recycle.

This prevents contamination and reveals hidden wear, impacting ROI by enabling precision boosts. Challenges: Tight integrations and safety risks.

Tips: Follow FANUC manuals, use ESD protection. ASI handles in 1 to 2 days off hours.



• Step 4 is installation, assembling upgrades. Mount controller and motors, connect drives, route shielded cables, build compliant enclosures, integrate peripherals via Fieldbus.

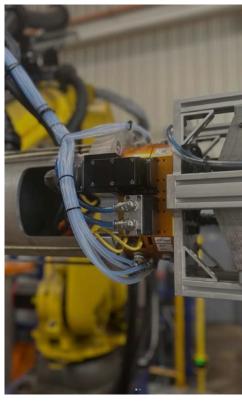
Proper work reduces noise by 90 percent and ensures compliance. Challenges: Alignment mismatches in old frames.

**Tips:** Use FSSB and regenerative drives. ASI preassembles for 1-week onsite completion.

**Step 5** covers commissioning, powering up for tests and training. Diagnose faults, home axes, tune PID, validate programs, adapt Gcode, and train on interfaces.

This aligns with goals, catching issues early for 40 percent uptime gains. Challenges: Code incompatibilities.

Tips: Auto-tune with Servo Guide.


 Step 6 optimizes, refining gains and profiles through trials, enabling AI monitors for 40 to 50 percent downtime cuts.

Optimization maximizes throughput by 20 to 35 percent. Challenges: Variable loads.

**Tips:** Use nanosmoothing. ASI blends this for peak results.

Next, controls setup.









## Setting Up Controls – The Brain of Your Machine

With the retrofit process outlined, controls setup stands out as a crucial and complex phase. Controls act as the machine's nervous system, coordinating commands, movements, and safety features. This chapter explores their function in FANUC retrofits, the difficulties of integrating legacy and modern technology, and practical solutions drawn from 2025 FANUC guidelines and industry forums. Presented in accessible language, it highlights why excelling in this area is essential for a successful upgrade.

Transitioning from older FANUC series like the 15 to advanced models like the 30i-B involves moving from sluggish serial ports to high-speed Ethernet and Al-enhanced capabilities. The controller interprets G-code, drives energize motors, I/O modules link peripherals, and human-machine interfaces facilitate operator input and monitoring. Modern systems enable processing of up to 1000 blocks per second, nano-smoothing for ultra-fine precision, and IoT connectivity for predictive upkeep, potentially reducing cycle times by 20 to 30 percent and energy consumption by 50 percent.

Technical gaps create significant challenges. Compatibility issues arise when analog signals from old systems clash with digital protocols like FANUC's FSSB; solutions include using interface modules for conversion and simulating setups in CNC Guide to avoid errors. Integrating peripherals demands mapping I/O points with tools like I/O Link i to accommodate

devices such as tool changers. Software migration requires transferring programs and parameters, often necessitating revisions validated in NCGuide to prevent path discrepancies. Electrical noise from factory environments can corrupt signals, mitigated by shielded cables and proper grounding. Safety compliance involves incorporating Dual Check Safety for ISO standards to prevent accidents and fines.

A real-world grinder retrofit from FANUC 18i to 31i-B illustrates these hurdles: spindle mismatches, I/O incompatibilities, G-code errors, EMI interference, and outdated safety measures were resolved through modular upgrades, PMC reprogramming, automated conversions, shielding, and DCS integration, yielding a 20 percent cycle time reduction and 40 percent reliability improvement. Best practices include early validation of compatibility, adopting modular systems for scalability, proactive noise mitigation, automating transfers, prioritizing safety from the start, and thorough documentation for future reference.

At ASI, our experience allows us to address these issues efficiently, often in just a few days, using pretested kits to achieve 99.9 percent uptime. Mastering controls setup is vital, but it leads into broader challenges discussed next.



5



## Main Setup Challenges and How to Fix Them

Building upon controls setup, this chapter focuses on key hurdles like communication barriers, scalability concerns, and safety requirements. Mishandled, these can lead to project delays and increased costs; addressed expertly, they ensure seamless outcomes. We examine each challenge with fixes, examples, and tips sourced from 2025 FANUC documentation and case studies.

Communication problems occur when legacy analog interfaces fail to align with modern FSSB protocols, exacerbated by electromagnetic interference that disrupts signals and causes erratic machine behavior. Effective fixes involve using shielded twisted-pair cables, implementing FSSB for high-speed noise-resistant links, and applying star grounding to minimize interference, with simulations in CNC Guide to verify data flow. In a Lincoln Park Boring Company mill retrofit, EMI from nearby equipment was resolved by adding fiber optics, restoring reliable operation.

Scalability requires planning for future expansions such as IoT sensors or additional axes, while balancing costs to avoid over-engineering. Solutions include modular I/O Link i for easy additions, flexible PMC programming to customize functions, and cost-benefit analyses to prioritize features, complemented by RoboGuide simulations for forecasting growth. Industry reports note that 40 percent of manufacturers overlook this, leading to premature upgrades.

Safety compliance is non-negotiable, demanding adherence to ISO 13849 through redundant monitoring to protect operators. Fixes entail integrating Dual Check Safety for torque and speed oversight, upgrading hardware like emergency stops, and conducting audits for OSHA alignment. An aerospace retrofit case added DCS to avert potential fines, enhancing operational security.

Best practices encompass early testing to identify mismatches, standardizing modular components for expansion, shielding against noise from the outset, embedding safety features in designs, and providing comprehensive training. ASI's pre-engineered kits reduce risks by 80 percent, as demonstrated in a mill project where FSSB and DCS resolved issues, increasing output by 25 percent. With ASI's guidance, these challenges transform into strengths for efficient retrofits.

## Swapping Servo Motors – Sizing Right for Power and Precision

Servo motors power the machine's movements, and retrofits often involve replacing outdated ones to improve efficiency and compatibility. This chapter discusses their role, correct sizing techniques, and considerations like torque, speed, and environmental factors to ensure optimal performance.

Aging servos suffer from wear and limited capabilities, while new FANUC beta iS models deliver 95 percent efficiency, quieter runs, and high-resolution feedback up to 1 million pulses per revolution, along with absolute positioning to skip rehoming after power losses. These upgrades can shorten cycle times by 20 to 30 percent and extend machine life by 10 to 20 years.

Sizing requires matching motor torque, speed, and power to the load's demands; undersized units stall, while oversized ones waste resources. Methods include load analysis for weights and forces, software tools like FANUC Servo Sizer for simulations, and targeting inertia ratios of 1:1 to 5:1 for precision applications. Key factors encompass continuous versus peak torque (sized at 1.5 to 2 times for accelerations), speeds up to 6000 RPM with stable velocity loops, and environmental adaptations like IP65 ratings for dusty or wet settings, derating torque for high temperatures.

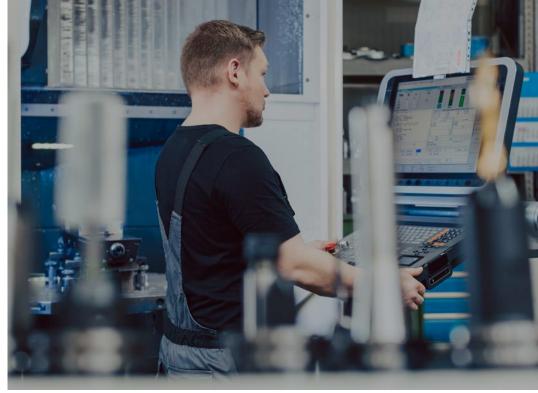
Best practices involve safety measures during swaps, oscilloscope testing for validation, and accounting for duty cycles to avoid overloads. ASI conducts on-site modeling to guarantee fits, as in a lathe project where proper sizing boosted reliability by 40 percent, preventing common pitfalls like tripping under load.





## Inertia – The Secret to Smooth Motion

Inertia, the resistance to changes in motion, is a critical yet subtle factor in servo performance. This chapter defines it in servo contexts, explains its significance for CNC stability, and offers calculation and optimization strategies based on 2025 resources like FANUC guides.


In servo systems, reflected inertia represents the load's resistance as experienced by the motor through mechanical links like gears. The inertia ratio—load divided by motor inertia—should ideally range from 1:1 to 5:1 for high-precision tasks to ensure quick responses without overshoot; ratios up to 20:1 are feasible with tuning but risk vibrations if unchecked. High ratios lower natural frequencies, prolonging settle times and amplifying resonance.

In CNC applications, proper inertia management enables effective PID tuning and reduces errors by 15 to 20 percent, as seen in gear grinding studies where optimized ratios enhanced dynamic stability. For example, a mill retrofit fixed oscillations by reducing the ratio to 5:1 via low-inertia motors. Fixes include gearing to square-reduce load (while mitigating backlash), software compensation with FANUC estimators, and load lightening through design tweaks, supported by modeling tools like Servo Sizer.

ASI employs advanced simulations to achieve ideal ratios, ensuring vibration-free operation and superior part quality in demanding environments.







## Installation Challenges – **Dealing with Real Factories**

Installation brings retrofit plans into the harsh factory setting, facing issues like contamination, wiring complexities, and enclosure demands. This chapter addresses these, with real examples and solutions to achieve durable setups.

Factory grime—coolant, shavings, and dust—can infiltrate components, causing shorts or corrosion. A mill retrofit was delayed when debris shorted a drive, requiring rework. Fixes include erecting barriers, selecting IP65-rated parts, and applying sealants, with HEPA filters for air quality. ASI establishes controlled zones to prevent such problems, completing clean installs swiftly.

Wiring routing must avoid electromagnetic interference; bundled cables in a milling case induced faults, extending downtime. Solutions involve separating power and signal lines, using shielded conduits, and testing with analyzers. Enclosures need customization for heat dissipation and compliance with UL/NEC standards, incorporating ventilation and labeling.

Noise and safety further complicate matters, addressed through grounding and interlock upgrades. ASI's off-site preparation enables reliable installations in days, minimizing production impacts.



## Commissioning and Startup - Getting to Production

Commissioning activates the retrofitted system, verifying function and training users to reach full production. Lasting 1 to 2 weeks industry-wide, ASI accelerates it to under 10 days through preparation.

The process starts with gradual power-up and diagnostics to check voltages and communications, avoiding shocks from residual energy. Axis homing and calibration follow, setting zeros and parameters like screw pitch. Servo tuning adjusts PID gains for stability, beginning unloaded and progressing to weighted tests monitored by oscilloscopes.

Program validation transfers G-code, resolves incompatibilities, and runs trials from rough cuts to finishes, integrating peripherals. Training covers new interfaces, maintenance, and troubleshooting for quick adoption. Challenges like parameter mismatches or vibrations are tackled with checklists and iterative methods, ensuring 40 percent uptime improvements.

This phase curtails costly downtime—\$500 to \$2000 per hour—and hastens ROI. ASI's focused approach, using FANUC tools, trims timelines by 40 percent for dependable startups.

# Why Partner with ASI? – Expertise Saves Time, Money and Headaches

Trying to handle machine retrofits on your own, or hiring teams without the right experience, can lead to serious problems. Delays, compliance issues, and unexpected costs are common when things don't go as planned.

ASI brings decades of hands-on experience across controls, sizing, safety, and integration. We know the risks, and we design solutions to avoid them.

We've helped clients cut unplanned downtime by 35% and extend machine lifespan by up to 20 years. Our pre-designed retrofit kits, proven setup processes, and remote diagnostics turn retrofits from high-risk tasks into reliable, high-ROI upgrades. In many cases, clients see their investment paid back within 1 to 2 years.

Our team delivers more than just install and go offering training and long-term support to keep your systems running and your business moving.







### Case Studies - Proven Results in the Real World

### **Nucor: FANUC Controls Upgrade**

Nucor upgraded its mill operations with FANUC controls designed and integrated by ASI. The result was a 40% drop in downtime and noticeably faster production cycles—translating directly into higher output and more consistent performance.

### Acipco: CNC Lathe Retrofit

Acipco modernized its lathe systems to improve the precision of pipe threads. The upgrade delivered better tolerances and added predictive maintenance features, reducing energy waste and improving productivity across the board.

These aren't one-off wins. They're examples of how ASI brings meaningful improvements to real operations no matter the industry or system complexity.



## Resources and Further Reading

Helpful tools and resources to guide your CNC retrofit journey.

#### FANUC Official Website

Browse retrofit kits, product specs, and CNC system documentation.

#### FANUC Case Studies (Triumph, Kyocera, more)

See real-world upgrade results that highlight reliability and ROI.

#### FANUC Training Courses

Courses for programming, setup, troubleshooting, and operator learning.

### Grand View Research – CNC Market Analysis

Industry reports covering emerging CNC trends and forecasts.

#### Practical Machinist Forum

Community-driven discussions with professionals sharing retrofit tips and lessons.

#### Production Machining Magazine

In-depth coverage on CNC upgrades, cybersecurity, and automation topics.

### Northwest Machine Tool Expo

Live sessions, demos, and vendor showcases related to machine retrofits.

#### Peter Smid's CNC Programming Handbook (Amazon)

An essential reference for anyone working with FANUC CNC systems.



# Get More from the Machines You Already Own

This guide walked you through what it means to retrofit: why it matters, how it works, and what results you can expect without the cost or disruption of replacing your entire machine lineup.

Upgrading controls, motors, and supporting systems reduces downtime, improves precision, and gives your facility the tech edge it needs to stay competitive.

ASI makes it simple to take that next step. We build retrofits around your specific needs, limit disruptions to your production schedule, and offer fast, reliable support. Most of our clients begin with a free assessment and go on to gain ROI within 1 to 2 years.

Ready to get started? Schedule Your Automation Consultation Today!

**Contact ASI Today** 



205.428.1550



info@automationsolinc.com



automationsolinc.com